
Bardess
Bytes of Wisdom:
50 Qlik Tips to Accelerate
Your Development

“Bardess Bytes of Wisdom: 50 Qlik Tips to Accelerate
Your Development is a great resource for any Qlik user
at any level. I learned so much and I recommend this
book to anyone looking to get more from their data.”

— Mike Muglia, Qlik Luminary, 2018-Present

Foreword

“I have had the pleasure of working on numerous projects with Bardess Group over the years and they

bring a level of expertise that is truly unmatched. Bardess Bytes of Wisdom: 50 Qlik Tips to Accelerate

Your Development is a great resource for any Qlik user at any level. I learned so much and I recommend

this book to anyone looking to get more from their data.”

— Mike Muglia, Qlik Luminary, 2018-Present

“I am excited about introducing this first eBook in our knowledge-sharing series, Bardess Bytes of Wisdom,

which is all about people helping people with data. This eBook presents innovative ways to use Qlik

technology and accelerate user adoption. It brings Bardess’ thought leadership to the forefront, and any

user will benefit from our collected knowledge and hands on experience.”

— Barbara Pound, CEO Bardess Group, Ltd.

“Bardess has many talented and passionate Qlik developers, and they represent the best and brightest

advocates of this premier data analytics platform. This book will allow you to take advantage of their

expertise and commitment.”

— Joe DeSiena, President Bardess Group, Ltd.

2

https://www.linkedin.com/in/michael-muglia-4782a1a/
https://www.linkedin.com/in/barbara-s-pound/
https://www.linkedin.com/in/jdesiena/

Table of Contents

01 - Call to Action: Subroutines

02 - Generate a Table Without a Source

03 - Change Inline Load Delimiter Setting to Copy from Excel

04 - Create a Change Log to Track Your Work

05 - Naming Conventions are Crucial to Consistency

06 - Clear Your Variables to Save Time Debugging

07 - Use Variable Parameters to Create Your Own Functions

08 - Setup A Lab Environment

09 - Develop Faster Using Test Cases

10 - An Overlooked Gem

11 - Understanding Join Distinct

12 - Dual Data Type Caveat

13 - Configuring the Rules for Qlik Sense® Ports

14 - Quickly Rename Fields with One Statement

15 - Use Preceding Load to Enhance Readability

16 - Load the Entire Contents of a File as a Value

17 - Running Dynamically Created Code

18 - Avoid the Rabbit Hole

19 - Use Placeholder Tables to Establish Field Formats

20 - Use ApplyMap for Fast VLookup Functionality

21 - Do While: How to Loop Until a Condition is Met

22 - Cardinality and How it Impacts Application Size

23 - Use AutoNumber to Optimize Your Data Model

24 - Effectively Work with Qlik Key Fields

25 - Ignore Potential Future Use Cases and Remove Unused Fields

26 - Using Arrays for Iteration

3

27 - Use SubField to Expand Records

28 - Use Wildcard to Load All Similar Files

29 - Dual Behavior in Set Analysis

30 - Use Copy/Paste to Save Time and Avoid Typos

31 - Pick Match, an If Statement Equivalent

32 - How to Associate Mixed Granularity Data

33 - When Should You Upgrade Qlik Sense®?

34 - Create A Codebase

35 - Using Advanced Search to Filter in Set Analysis

36 - Changing Column Width

37 - Making Date Formats Functional

38 - Create Your Own Concatenated Keys

39 - Looping Over Records Using While

40 - Troubleshooting Associations: Subset Ratio

41 - Hidden Default Apps

42 - Using FieldValueList for Loops

43 - Did You Try Turning It Off and On Again?

44 - FileList Mask Order Test

45 - How to Create a Quick Month Map

46 - Get QVD Metadata from XML Headers

47 - Where do Reload Logs Reside?

48 - Natively Loading JSON

49 - Section Access Tips and Tricks

50 - Understanding QVDs and Optimized Loads

Conclusion

4

Call to Action: Subroutines

To start it off I am going to talk about Subroutines. A subroutine is a user defined program within your
script that you can call at a later time.

For example:

Sub RowCount(pRowTable)

Let RC.Rows = Num(NoOfRows('$(pRowTable)'),'#,##0');

Trace ---------------- $(pRowTable): $(RC.Rows) rows;

RC.Rows=;

End Sub;

Fact:

Load

Rand() as Random

AutoGenerate

(Ceil(Rand()*100));

CALL RowCount('Fact');

5

Which returns:

This is a very simple example, but you can start to see the possibilities.

6

Generate a Table Without a Source

You might have noticed I used this in the last example. AutoGenerate is so useful and has so many use

cases. I probably use this in every app I create: from empty stub tables , generating a new field using

another’s unique values, or as a way to log different steps within the load.

What it does is generate a table with the number of rows specified. This means you can create records

with the output of functions, variables or strings without needing to specify a source.

Here is an example, which includes another tip if you catch it:

// Create empty table and setting field types

Log:

Load

Null() as Log.Table,

Num(Null(),'#,##0') as Log.Rows,

Timestamp(Null()) as Log.Timestamp

AutoGenerate

(0);

Fact:

LOAD

TransLineID,

TransID,

"Num",

Dim1,

Dim2,

Expression1

FROM

[lib://QVD/SampleTransactions.qvd](qvd);

7

// Add Log record

Concatenate(Log)

Load

'Fact' as Log.Table,

NoOfRows('Fact') as Log.Rows,

Now() as Log.Timestamp

AutoGenerate

(1);

Which returns:

8

Changing the Inline Load Delimiter
One thing which would have been useful years ago was knowing I could copy data directly from Excel into

the load script for an Inline Load if I changed the delimiter setting in the load script.

So what this means is you can copy a data set from Excel:

Paste into Qlik and add ‘(delimiter is \t)’ at the end of the Inline Load statement.

* \t is for tab, my Excel default delimiter. You can change this to whatever you want. See the

documentation for more info.

9

https://help.qlik.com/en-US/sense/April2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptSpecifiers/delimiter.htm

Reload and there you have it!

10

Create a Change Log to Track Your Work
This is a process I wish I had started doing sooner. Nowadays in every app I build, I create a script section

named Change Log. This little piece of documentation gives a bit of background on the app, and then a

list of changes over time with tags to be able to find where they were done easily.

Example

///$tab Subroutine
Sub RowCount(pRowTable)

Let RC.Rows = Num(NoOfRows('$(pRowTable)'),'#,##0');
Trace ---------------- $(pRowTable): $(RC.Rows) rows;

RC.Rows=;

End Sub;

Fact:
Load

Rand() as Random

AutoGenerate

(100000); // [v1.1.01]

CALL RowCount('Fact'); // [v1.1.02]

Temp:
Load

Chr(IterNo()) as Char

AutoGenerate

(1)
While

IterNo() <= 2;

Outer Join(Fact)

Load

Char
Resident

Temp;

11

Drop Table Temp;

CALL RowCount('Fact');

///$tab Exit
exit script;

///$tab Change Log
/***

Application: 101 - Subroutine

Description:
Example application to provide a simple example of how a subroutine
works.

Version: 1.1
Date: 2019-05-01

Notes: None

Changes:
- Upped the fact records from 1000 to 100000 [v.1.1.01]
- Added additional RowCount call. [v1.1.02]

Version: 1.0
Date: 2019-041-12

Notes: None

Changes:
- Initial Build

Version: X.X (Change Log Definition)
Date: %Date of Change%

12

Author: %Full Name% (%Email Address%)
Notes:

Used for change log template.
[Tags] can be used to take advantage of the search box to navigate directly to change

specified.

Changes:
- [vX.X.x1]
- [vX.X.x2]
- [vX.X.x3]

***/

Naming Conventions are Crucial to Consistency

Like most other programming languages, it is important to decide and follow some programming

standards. One key standard is how to name things. Now I’m not here to say that you should name things

the way I do, that isn’t the point. What is important is though, is however you do name things, keep it

consistent.

As an example here are a few ways I name things.

Type Standard Example
Regular Variable ‘v’ Prefix vStartDate

Expression Variable ‘x’ Prefix xNetSales

Set Analysis Variable ‘set’ Prefix setWTD

Field Name Snake Case order_amount

Key Field ‘%’ Prefix %product

Flag Field ‘_flag’ Suffix ytd_flag

13

As a consultant, I interact with a lot of other people’s apps. In these scenarios, I will take on their way of

doing things to keep the app consistent. I do this so that I am not merging two different styles. So keep in

mind that consistency is the key, and that consistency may require using different standards.

Clear Your Variables to Save Time Debugging

This is a very short and sweet one. Clear your variables. Trust me, it is worth it. It’s easy and will save you

time debugging.

To clear a variable just do:

RC.Rows=;

That’s it.

Use Variable Parameters to Create Your Own
Functions

In other words, user defined functions. With utilizing variable parameters, you can create your own

functions to use later.

For example, a function to calculate the number of weeks between two date fields:

SET fWeekDiff = '(((Year($2)*52)+Week($2))) - (((Year($1)*52)+Week($1)))';

14

Data:

Load

StartDate,

EndDate,

$(fWeekDiff(StartDate,EndDate)) as NoOfWeeks

;

Load

Date#(StartDate,'M/D/YYYY') as StartDate,

Date#(EndDate,'M/D/YYYY') as EndDate

Inline [

StartDate, EndDate

1/3/2017, 2/14/2017

2/14/2017, 6/1/2017

6/1/2017, 8/14/2017

];

Setup A Lab Environment

While it is great that Qlik® offers a Qlik Sense® desktop version, I usually suggest trying to set up a server

environment for local development. I personally run a Windows Server VM with Qlik Sense® Enterprise

installed using a unified license, which I can access with my browser.

I do it this way for three main reasons.

1. It is the closest local environment to what the majority of customers have.
2. It keeps it contained and I can easily take snapshots and do rollbacks.
3. I use MacOS and it is cheaper than paying for a hosting service.

While I do it in a VM, it is worth knowing that you can install Qlik Sense® Enterprise locally on a Windows

8+. I have found that this has made things exponentially better for development and testing compared to

using the desktop versions. By using a unified license, applying the same signed key to multiple

deployments lets you share the same users and access types. Users can access all connected

deployments using the same Professional or Analyzer access allocation.

15

Develop Faster Using Test Cases

I am a firm believer that boiling down a problem into its simplest form is the fastest way to solving it. I also

think one of the fundamentals of programming is breaking a problem into a bunch of smaller problems. If

you combine these together, you get test cases out the wazoo.

I find that I am able to develop faster and more accurately by separating out the particular problems out of

the application and testing it on the most simple scenario possible. Another benefit is you can keep these

examples for reference later. Here is a simple one I made on NullAsValue. I made this test case in a

separate app in a couple of minutes, versus trying it on a client’s app over hundreds of millions of rows

with a reload taking hours.

Test Case: NullAsValue Execution Test

Description: This Test is to determine whether the NullAsValue gets applied on the data being loaded in

or on the resulting data.

Result: On the resulting data

status_map:
Mapping Load * Inline [
input, output
1, one
2, two
3, three
];

Raw:
Load

'A' as dim,
1 as num

AutoGenerate
(1);

16

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/NullAsValue.htm

Concatenate(Raw)
Load

'B' as dim,
Null() as num

AutoGenerate
(1);

Concatenate(Raw)
Load

'C' as dim,
3 as num

AutoGenerate
(1);

NullAsValue num;
NullValue = 2;

Check:
NoConcatenate Load

dim,
ApplyMap('status_map',num) as num

resident
Raw;

Drop table Raw;

17

An Overlooked Gem - Controlling Data with Set
Analysis

You’d probably be surprised that this is one of my most used functions within a dashboard. It is just such a

cool function. Though, it is almost exclusively used for UI/UX functionality.

Only()

Only is an aggregation function that can be used on a string field. If a single result comes back it will

return the result, if more than one values occur it returns null.

Example
FieldA FieldB

Apple Fuji

Apple Honey Crip

=Only(FieldA) would return Apple

=Only(FieldB) would return NULL

Documentation

One of the best features is that you can use set analysis with it, which gives you a lot of control. It can be

used to pull out expression definitions stored in a field, used to create dynamic labels, and many other

things.

18

https://help.qlik.com/en-US/qlikview/April2019/Subsystems/Client/Content/QV_QlikView/ChartFunctions/BasicAggregationFunctions/only.htm

Understanding Join Distinct

This is something that I found out the hard way. The Qlik® Associative Engine applies the DISTINCT

keyword on the resulting dataset. So when you perform a join distinct, you are not joining the distinct table

to the other table. You are doing the join and then returning the distinct records from the resulting join.

Take this example:

original:

Load * Inline [

id, dim, sales

1, A, 100

2, A, 50

3, B, 75

3, B, 75

4, C, 1000

];

Left Join(original)

LOAD Distinct * Inline [

dim, desc

A, Big Fish

B, Reoccurring

B, Reoccurring

C, High Roller

];

19

You might expect:

id dim sales desc

1 A 100 Big Fish

2 A 50 Big Fish

3 B 75 Reoccurring

3 B 75 Reoccurring

4 C 1000 High Roller

However, what you actually get is:

id dim sales desc

1 A 100 Big Fish

2 A 50 Big Fish

3 B 75 Reoccurring

4 C 1000 High Roller

20

If you want to achieve the first result. You will need to do something like this.

original:

Load * Inline [

id, dim, sales

1, A, 100

2, A, 50

3, B, 75

3, B, 75

4, C, 1000

];

tmp:

LOAD Distinct * Inline [

dim, desc

A, Big Fish

B, Reoccurring

B, Reoccurring

C, High Roller

];

Left Join(original)

Load

*

Resident

tmp;

Drop Table tmp;

21

Dual Data Type Caveat

Dual combines a number and a string into a single record, such that the number representation of the

record can be used for sorting and calculation purposes, while the string value can be used for display

purposes.

Syntax:

Dual(text, number)

Caveat

Now when I think of the data type combining both text and a number value, I tend to think that this means

a value can be the unique combination of the two. However, this is not the case.

The number in Dual is the core value, while the text is just the display value.

What does this mean?

This means a number value can only have one display value. While a text value can be the display value

of multiple numbers

22

https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/FormattingFunctions/Dual.htm

.

Example

Data:

Load

RowNo() as Id,

Text(String) as String,

Num(Number) as Number,

Dual(String,Number) as Dual

Inline [

String, Number

A, 1

B, 2

C, 3

A, 4

Z, 1

];

Output

Troubleshooting

I have made this mistake when trying to combine mixed granularity within dates. Say at the end of the

year a client’s finance team closes the books and closes their general ledger at the end of the year. They

then report this at a year level. However, in the current year, they report at the month level.

23

To incorporate both sets of data in a chart I came up with the concept of doing Month-Year, with PY being

a whole previous year.

Month MonthNum Year MonthYear Dual
PY 0 2018 PY-2018

Jan 1 2019 Jan-19

Feb 2 2019 Feb-19

Mar 3 2019 Mar-19

Apr 4 2019 Apr-19

May 5 2019 May-19

Jun 6 2019 Jun-19

Jul 7 2019 Jul-19

Aug 8 2019 Aug-19

Sep 9 2019 Sep-19

Oct 10 2019 Oct-19

Nov 11 2019 Nov-19

Dec 12 2019 Dec-19

Then a new requirement came and a particular budget was only at the year level. So we stuck with a

similar concept, but this time CY.

24

Month MonthNum Year MonthYear Dual
PY 0 2018 PY-2018

CY 0 2019 CY-2019

Jan 1 2019 Jan-19

Feb 2 2019 Feb-19

Mar 3 2019 Mar-19

Apr 4 2019 Apr-19

May 5 2019 May-19

Jun 6 2019 Jun-19

Jul 7 2019 Jul-19

Aug 8 2019 Aug-19

Sep 9 2019 Sep-19

Oct 10 2019 Oct-19

Nov 11 2019 Nov-19

Dec 12 2019 Dec-19

Now this worked out as is. However, I had made the Month field a Dual. It took me far too long to realize

that Dual('PY’,0) and Dual('CY’,0) would not provide the expected results. It would always default to

PY since there can only be one display value per number.

Hopefully knowing this can save you some time in the future.

25

Configuring the Rules for Qlik Sense® Ports

Qlik® has great documentation, however it is a bit cumbersome when it talks about networking. Below are

the ports needed.

Also, you need to create an inbound and outbound rule. Here is a tutorial. It is much less complicated than

it sounds.

Ps. I am not covering HTTP because you shouldn’t do it. Period.

Single Node

Port Purpose Comment

443 HTTPS Traffic Absolutely necessary

4244 Windows
Authentication *Only versions prior to April 2018

4242 Qlik Repository *Only if you want to talk to the QRS API

Multi Node

I suggest looking at the documentation since there are so many variations depending on the use case.

26

https://www.tomshardware.com/news/how-to-open-firewall-ports-in-windows-10,36451.html
https://help.qlik.com/en-US/sense/June2019/Subsystems/PlanningQlikSenseDeployments/Content/Sense_Deployment/Ports.htm

Quickly Rename Fields with One Statement

This is a cool little trick that I use a lot because of preference. The idea is you can rename all the fields

within your Qlik Sense® application using one statement, two if you count the prep work.

data:

Load

'Test' as data_name,

Rand() as random_number

AutoGenerate

(100);

field_rename_map:

Mapping Load

FieldName(IterNo(),'data') as old_name,

Capitalize(Replace(FieldName(IterNo(),'data'),'_',' ')) as new_name

AutoGenerate

(1)

While

IterNo() < NoOfFields('data')+1;

Rename Fields Using field_rename_map;

Documentation

I tend to use this so that the fields in the data model are the same as the front end. This was something I

started doing because previously in Qlik Sense®, even if you named a Master Item differently, the field

name showed up in the breadcrumb trail. Now it is not so important.

I also do it at the end of the load script so the field names can stay consistent up to that point. This makes

troubleshooting a lot easier on both sides.

27

https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/rename-field.htm

Use Preceding Load to Enhance Readability

Preceding Load allows you to perform additional load steps before initializing a table. Each step uses the

output of the preceding load statement as input.

Original:
Load

Pick(Floor((Rand()*10)/2)+1,'A','B','C','D','E') as Customer,
'Q'&(Mod(RowNo(), 4)+1) as Quarter,
Ceil((Rand() * 100) * (Rand()*10)) as Sales

AutoGenerate
(100);

New:
Load

CustomerName,
Quarter,
TotalSales,
If(Customer = Previous(Customer),

TotalSales - Previous(TotalSales), 0) as QoQChange
;
Load

Customer as CustomerName,
Quarter,
Sum(Sales) as TotalSales

Resident
Original

Group By
Customer,
Quarter

Order by
Customer,
Quarter;

Drop Table Original;

28

In my opinion, the biggest benefit of using this is code readability. There may be times where putting all

the transformations in a single Load statement is faster, however it is in most cases easier to understand

code that pieces out the transformations into multiple steps versus having a ton of nested functions.

With that said, if performance is a high priority it is worth testing various avenues. All in one load,

preceding load, exporting to QVDs and performing the transformation on a new ingestion, etc... There will

almost always be multiple ways to solve a problem. A priority in any type of development is that it is

readable, whether it is you 6 months in the future or a colleague who takes over support.

Load the Entire Contents of a File as a Value
Have you ever wanted to consume a whole file’s content into Qlik Sense® as a single value? Perhaps, a

series of README files or code files which can be shown on the front end? This is a little tricky since Qlik

Sense® was really built to consume tabular data. So when connecting to files it is trying to determine the

columns and rows. Here is a way to get around that:

test:
Load

"@1:n" as Source
FROM

[lib://data/readme.md](fix, utf8, record is 100000 lines);

This will load the entire file contents as one field up to 100,000 lines. This can be changed of course.

29

A more complicated example, say I want to load a series of HTML files, which I will utilize as a source for

an extension to render.

html:
Load

Num(Null()) as Counter
AutoGenerate

(0);

for each file in FileList('lib://QlikShare/Dev/data/html-test-cases/*.html')

Concatenate(html)
Load

'Test Case '&Subfield(FileBaseName(),'.',1) as Id,
Subfield(FileBaseName(),'.',2) as Name,
"@1:n" as Example,
Ceil(Subfield(FileBaseName(),'.',1)/3) as WowFactor,
1 as Counter

From
[$(file)](fix, utf8, record is 100000 lines);

Next file;

Which results in:

30

Running Dynamically Created Code

This concept can be used in so many ways and can come in handy for complex situations. Essentially,

with the use of dollar sign expansion, you can execute a script you have programmatically built in the

script or pulled in from source files.

Notice $(vAnswer) in the below example. It is going to be expanded by the dollar sign expansion and be

executed like any other script.

Answer:

Load * Inline [

Answer

Yes

No

Maybe

];

Let vAnswer = 'Trace Should you do it? ' & Upper(Peek('Answer',Floor(Rand()*3),'Answer')) &'! ;';

$(vAnswer)

31

Which returns:

Now this is a fun and simple example, but not really practical. A more complex and practical example is

loading script from external files and executing them on the fly.

Let’s say that the DBA team came to you and needed you to run a series of audit queries each day.

However, this list of SQL queries will always be changing and the solution should be flexible. Is this

something that Qlik Sense® can handle?

32

Of course! All we need to do is combine the tip covered above with this concept.

Audit:

Load

Text(Null()) as AuditName,

Text(Null()) as Query

AutoGenerate

(0);

for each file in FileList('lib://QlikShare/audit/queries/*.sql')

Concatenate(Audit)

Load

Subfield(FileBaseName(),'.',2) as AuditName,

"@1:n" as Query

From

[$(file)](fix, utf8, record is 10000 lines);

Next file;

AuditRecords:

NoConcatenate Load

Text(Null()) as AuditName

AutoGenerate

(0);

For q = 0 to NoOfRows('Audit')-1

Let vQuery = Peek('Query',$(q),'Audit');

Let vAuditName = Peek('AuditName',$(q),'Audit');

tmp:

$(vQuery);

33

Concatenate(AuditRecords)

Load

'$(vAuditName)' as AuditName,

NoOfRows('tmp') as AuditRecords

AutoGenerate

(1);

Store tmp into [lib://QlikShare/audit/results/$(vAuditName).csv](txt);

Drop Table tmp;

Next q;

Left Join(Audit)

Load

AuditName,

AuditRecords

Resident

AuditRecords;

Drop Table AuditRecords;

This script will load the script from all of the SQL files in a folder. Then execute them, track the number of

records returned by the query, and then store the individual results to a CSV file for the DBA team to

analyze. Pretty nifty right?

34

Avoid the Rabbit Hole

You should keep in mind that just because you can do something, doesn’t necessarily mean you should.

Try and be aware of the actual value something will provide. If it takes you 40 hours to automate

something that is done manually for 5 minutes every month, it would take you 40 YEARS to see the return

on your investment. That’s over-engineering. Now usually it isn’t something that obvious, but just keep in

mind there are rabbit holes at every step in programming.

To be honest, this is something I still struggle with. For example, if an application is loading from a

database using SELECT *, with no transformation, based on habit I want to export it to a QVD first and

then load that. However, in reality all I am doing is creating additional overhead.

So yeah, this is just a reminder that while we can do crazy things, sometimes the actual business value

benefit is increased by handling it in a much boring simpler way.

Use Placeholder Tables to Establish Field Formats

You might have noticed me using these in a few of the previous examples. The idea is that you create an

empty table that you can concatenate to. The number one reason I do this is to be explicit. I know Qlik

Sense® can and will auto-concatenate, but I want to be extremely clear in what I am doing, so that if there

are any bugs I don’t have to troubleshoot code that has some behind the scenes magic.

Another reason to do this is you can establish the format of a field. This initialization of a table with the

formats will override later formatting attributes.

Placeholder:

Load

Text(Null()) as TextTest,

Num(Null(),'0000') as NumTest,

Timestamp(Null(),'YYYY-MM-DD hh:mm:ss') as TimestampTest

AutoGenerate

(0);

35

Concatenate(Placeholder)

Load

1 as TextTest,

Num(1,'#,##0') as NumTest,

Now() as TimestampTest

AutoGenerate

(1);

Concatenate(Placeholder)

Load

'Two' as TextTest,

2 as NumTest,

Date(Floor(Now()),'MM/DD/YYYY') as TimestampTest

AutoGenerate

(1);

Which returns:

Use ApplyMap for Fast VLookup Functionality
This is a post that might be common knowledge to you, but if not this can be a crucial addition to your

workflow.

ApplyMap is a function that is very similar to VLookup in Excel. Essentially you can utilize a mapping table

that you can bulk find and replace; provide an input and receive and return an output that matches.

36

https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/MappingFunctions/ApplyMap.htm

Example

String_map:
Mapping Load * Inline [
input, output
1, One
2, Two
3, Three
];

Data:
Load

RowNo() as Num,
ApplyMap('String_map',RowNo(),'N/A') as String

AutoGenerate
(4);

Which returns:

*Note the third parameter is what should be provided if there isn’t a match. By default it is the input value.

37

While it is a great feature, which can also be accomplished by the LookUp function, it is extremely fast. If

you are working with large datasets, it is usually faster to utilize multiple ApplyMaps than to do a join.

Now I have no evidence to support this claim, but my hypothesis is that ApplyMap is so fast because it

happens at the bit-stuffed pointer level. I would love to have a conversation with Qlik® R&D around this to

better understand the inner workings of the function.

One important thing to remember, the mapping happens against the first field no matter what. Field

names do not matter. So always make sure your input field is the first and your output field is the second.

Due to a few forgetful moments and brainless troubleshooting, I have made it a habit to always create the

mapping tables with the field names ‘input’ and ‘output’. And since the mapping tables are treated

differently, it does not matter if you have several mapping tables with the same name fields.

Another bonus is that the mapping tables are dropped at the end of the script, which alleviates some

cleanup.

Do While: How to Loop Until a Condition is Met

Most loops you will see are For loops. These are great if you can programmatically determine the number

of loops you need to do. For example the number of rows of a table. However, what if you need to loop as

long as it takes to finish? You don’t know how long it will take. Say you want to extract from an unreliable

database that fails for unspecified reasons and you just have to try until you succeed. These types of

examples are where Do While loops come in.

Do..Loop, or as I like to call it Do While, allows you to loop until a condition is met.

In this example, I want to loop for 5 seconds give or take.

// Determine numerical value of a second

Let vSecond = Num(Timestamp#('00:00:01','hh:mm:ss') - Time#('00:00:00','hh:mm:ss'));

Let vEnd = Num(Now()) + ($(vSecond)*3);

38

https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/InterRecordFunctions/LookUp.htm
https://help.qlik.com/en-US/sense/April2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptControlStatements/For.htm
https://help.qlik.com/en-US/sense/April2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptControlStatements/do.htm

Set vIter = 0;

Do While Num(Now()) < $(vEnd)

Trace --------------------------- Iteration $(vIter);

Let vIter = Num(vIter + 1,'#,##0');

Loop

Which returns:

39

12,108 iterations in 5 seconds, so 2,481 a second. That’s pretty fast! Granted I wasn’t doing any heavy

lifting, but still. While this example isn’t exactly practical, I think it shows the point.

Cardinality and How it Impacts Application Size

One of the key things to understand when trying to tune a Qlik Sense® application for performance is

understanding the inner-workings. If you haven’t done so already, I very strongly suggest you read

Henric’s blog Symbol Tables and Bit-Stuffed Pointers which goes into detail on how Qlik Sense stores

data.

After grasping that, it starts to make sense why cardinality has such an impact on application size. So

keep in mind, before trying to minimize data size, try and minimize the number of distinct values. It can

play a huge role in cutting down size, without limiting functionality. Which is always an easier sell to your

users.

*PS. Take some time and read through all of Henric’s blogs. He is one of the best Qlik blog writers out

there.

Use AutoNumber to Optimize Your Data Model

To follow up on cardinality, a very useful function is AutoNumber. AutoNumber will create an integer for

each distinct value in your defined namespace, which is usually a field. The second parameter, allows you

to define the namespace, which means you can use it across multiple fields while keeping data

association integrity.

The best use case for AutoNumber is for keys. This will create the smallest footprint for your key fields

and maintain the relationship. This is because the amount of space for an integer is greatly smaller than a

string, or dual value field like a timestamp.

40

https://community.qlik.com/t5/Qlik-Design-Blog/Symbol-Tables-and-Bit-Stuffed-Pointers/ba-p/1475369
https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/Autonumber.htm

One tip, apply AutoNumber at the end of your data model build. It is much easier to troubleshoot data

model issues when you can see the actual data. After you know those linkages are good, then utilize the

function.

41

Effectively Work with Qlik Key Fields

Here are a few things I strongly suggest in working with Qlik key fields.

● Make separate key fields*
● Prefix the field with ‘%’
● Set HidePrefix variable to ‘%’
● Use AutoNumber

*Because of how the association engine works, you should never use a key field in an expression. It can

return some very unexpected results. So to handle this, you should make a duplicate field to handle the

association and then use the other field in your expressions.

A visual of what I mean:

Let HidePrefix = '%';

Sales:

Load

RowNo() as Id,

AutoNumber(Pick(Ceil(Rand()*4), 'A','B','C','D'),'Product') as %ProductId,

Ceil(Rand()*100) as Qty

AutoGenerate

(1000);

Product:

Load

AutoNumber(Chr(RowNo()+64),'Product') as %ProductId,

Chr(RowNo()+64) as ProductId

AutoGenerate

(5);

42

Ignore Potential Future Use Cases and Remove
Unused Fields

I can’t tell you how many times a client has said to leave a field in the data model just in case they want to

use it later.

Just don’t do it. Take it out now, if they want to use it later, then bring it in later. You can easily set up the

app so that it is a super simple task down the road.

● Comment it out
● Use a drop field statement which they can remove later (suggested)

The thing is, if you are tuning an app that is already slow and having issues, you should not be thinking

about the future state. You should be thinking about getting what you currently have working to an

acceptable level. You won’t be adding functionality to a clunky app if no one is using it because it takes 3

minutes to load the page.

/end rant

43

Using Arrays for Iteration

Arrays and/or Lists are very common in programming languages. In Qlik scripting there are two ways to

go about creating an array of sorts.

The first way is storing a list in a variable:

Set vCount = 'One','Two','Three';

for each i in $(vCount)

Trace ------------ Variable Array $(i);

Next i

The second way is by using a field:

Cnt:

Load * Inline [

Cnt

One

Two

Three

];

For each x in FieldValueList('Cnt');

Trace ------------ Field Array: $(x);

Next x;

The main use of these will be for iterating over their values. There are not any native list/array operations,

however you can get around that utilizing other Qlik Sense® functions. For example: concatenate, where

not exists, reinitializing the variable, etc…

44

Use SubField to Expand Records

If you are like me, you probably use SubField a lot. I had used it for years before I stumbled across one of

its most powerful features in someone else’s code. If you do not provide the position parameter, it will

expand a record for each value.

I’ve worked with a few older databases that liked to store arrays within a single column. This is a perfect

example of where it comes in handy.

Data:

Load

RowNo() as ID,

Replace(Replace(Qty,'(','['),')',']') as Qty

Inline [

Qty

(10,12,15,20)

(25,25,25,25)

(1080,720,2,3)

](delimiter is \t);

Expanded:

Load

RowNo() as LineID,

ID,

Qty,

SubField(PurgeChar(Qty,'[]'),',') as Quantity

Resident

Data;

Drop Table Data;

45

https://help.qlik.com/en-US/sense/June2019/Subsystems/Hub/Content/Sense_Hub/Scripting/StringFunctions/SubField.htm

Which results in:

Wildcard Load for Bulk Loading
One good thing to know is that you can use an asterisk * within a file name. Qlik Sense® will load all the

files that fit the criteria.

Say you have a directory named QVD, which has all of your QVDs prepped and ready for your data

model. You can simply do the following to load them all.

Load

*

From

[lib://QVD/*.qvd](qvd);

46

If you have extracts with a date or notation to them, you can load them in a similar fashion.

Fact:

Load

*

From

[lib://Data/Sales_*.csv](txt, utf8, embedded labels, delimiter is ',');

Using these files as an example:

All the files would be loaded except for Sales201904.csv, because it doesn’t match the Sales_*.csv

criteria, because it is missing the underscore.

One thing to note is you are relying on the Qlik® Associative Engine’s brain on what to do with the tables.

You aren’t being explicit with what you want. So tables with the same fields will be auto-concatenated,

while others with a different structure will be created as different tables.

If you want to be explicit, which you know I do, you can utilize a loop.

Sales:

Load

Null() as Tmp

AutoGenerate

(0);

47

For each File in FileList('lib://Data/Sales_*.csv')

Concatenate(Sales)

Load

*

From

[$(File)](txt, utf8, embedded labels, delimiter is ',');

Next File

Drop Field Tmp;

Dual Behavior in Set Analysis

By default you need to reference the display (read: string) value of a dual field in set analysis versus the

numerical value. I personally think this is a weird behavior of Qlik Sense®, however it is what it is. The

downside to this is that string operations are much slower than numerical ones. To overcome this you

need to leverage advanced search within set analysis.

Example: Use set analysis to filter down to dual value with numerical value of 1*

*Remember in the Dual Data Type Caveat section how two numbers can represent the same string?

See the different outputs:

You’ll notice that you need to use greater than or equal to and less than or equal to for it to work.

=Only({<Dual={">=1<=1"}>} Dual)

48

Use Copy/Paste to Save Time and Avoid Typos
There’s nothing worse than waiting for a long reload to find out you made a typo. One thing I have made a

habit of is copy and pasting script items: table names, field names, variables, etc… This is definitely a

simple item, but it can save you a ton of time down the road.

If you aren’t used to hot keys, I strongly suggest learning this one.

● Win: Ctrl + C (Copy) Ctrl + V (Paste)
● Mac: ⌘+C (Copy) ⌘ + V (Paste)

Pick Match, an If Statement Equivalent
One of the most resource intensive functions in a chart is the If statement. In a lot of scenarios, what you

can do is leverage the combination of Pick and Match to replicate the functionality while increasing

performance.

If Statement

If([Inventory Type]='Individual', Sum(Qty), If([Inventory Type] = 'Bulk',

Sum(BulkQty)))

Pick Match Equivalent

Pick(Match([Inventory Type],'Individual','Bulk'),
Sum(Qty),
Sum(BulkQty))

If you need an Else condition, there is a neat little trick you can do by adding a ‘+1’ and making the first

option the Else result:

Pick(Match([Inventory Type],'Individual','Bulk')+1,
'Non-Physical Item',
Sum(Qty),
Sum(BulkQty))

49

https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ConditionalFunctions/if.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ConditionalFunctions/pick.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ConditionalFunctions/match.htm

How to Associate Mixed Granularity Data
There will always be situations where the data you get isn’t at the same granularity as the other. The

benefit of Qlik® is you can leverage the Associative Engine model to account for these scenarios. Some

instances will call for a link table, others a concatenated fact, but in the end you will be able to associate

the data so you can visualize and compare them effectively.

Here is a super simple example of sales data that is at the Product level, while the budget is at the

Product Category level. There are many ways to handle this scenario given the limited amount of fields,

however I think it is worth showing in this way so you can directly see how to associate across a field.

Data

Sales:
Load

RowNo() as Id,
*

Inline [
ProductId, Amount
1001, 100
1002, 50
1001, 25
1003, 75
1004, 50
1002, 15
1002, 75
];

Product:
Load * Inline [
ProductId, Product, Category
1001, One, Alpha
1002, Two, Alpha
1003, Three, Beta
1004, Four, Beta
];

50

Concatenate(Sales)
Load

'Budget-' & Category as ProductId,
Budget

Inline [
Category, Budget
Alpha, 250
Beta, 175
];

Concatenate(Product)
Load

'Budget-' & Category as ProductId,
Category

Inline [
Category, Budget
Alpha, 250
Beta, 175
];

If you look closely, I am leveraging the ProductId field to tie the Budget in the Sales table to the Category

field in Product table. This will let us do the following:

* I included the Budget column in the top chart to show you that you won’t be able to correctly visualize it

at the granularity beneath it.

51

When Should You Upgrade Qlik Sense®?

With Qlik Sense® having multiple releases a year, it can quickly become overwhelming staying up to date

on the latest release. And even then, should you even be on the latest and greatest?

Here is what I recommend as a rule of thumb: when upgrading or installing for the first time, install the

latest release with a patch out. I always suggest staying one release behind so that you aren’t the

production testers. With most software, there will be bugs. If you have mission critical items, it’s better

safe than sorry.

Now, when to upgrade? I suggest staying no more than 3 releases behind. So if you are already one

behind, that means you would upgrade every 2 releases: ~6 months. Note, that each release is only

supported for 2 years. So at the bare minimum, you should stay within that window.

The caveat to these recommendations is if there is a feature or bug fix you need. Those are good reasons

to upgrade outside of these recommendations.

Create A Codebase

One of the reasons I started writing these types of things was to have a place to store my random Qlik

info. But even before this, over the years I have collected a number of code snippets that I can refer to

whenever a similar problem comes up. So you don’t need a blog or ebook, you just need a folder.

To be honest, there are a lot of repetitive problems within the Qlik® ecosphere. I think that is true for

programming languages in general. However with Qlik scripting being a relatively niche area, it is even

more apparent.

So with that said, save your work! Create a folder and start adding .qvs files and give them some

comments. Future you will thank you.

52

I recommend downloading VS Code. There is a Qlik extension made by Xavier Han, which will give you

syntax highlighting among other things. Both great and free. Also, I cannot recommend using the Chrome

extension Add-Sense enough! Credit to Erik Wetterberg, it makes pulling load scripts from Qlik Sense

apps a breeze.

If you want to up your game and potentially learn a new skill, create a Git repo. Many offer at least one

free private repo, I personally use GitHub, but there are tons of options out there. This is a skill I think

every developer should have, even if it’s just the basics.

*Disclaimer: If you are doing work for a client, make sure what you are saving is okay to have a copy of.

Using Advanced Search to Filter in Set Analysis

Set Analysis is extremely powerful, however it can seem a bit overwhelming at times. One thing I felt

helped me further understand the mechanics is recognizing that what will work within a filter search, will

work within a Set Analysis condition between double quotes.

For example, take this dataset:

53

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Gimly81.qlik
https://github.com/Gimly
https://chrome.google.com/webstore/detail/add-sense/bbiljflfafkaejgdebbnmcohpidgkejj?hl=en
http://upper88.com/
https://git-scm.com/
https://github.com/
https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/ChartFunctions/SetAnalysis/set-analysis-expressions.htm

Using advanced search functionality, you can filter down the

data based on an expression:

Apply the same expression in Set Analysis and you will receive the same filtering capability

Expression: =Sum({<id={“=Sum(exp)>50”}>} exp)

54

You can not only use expressions, but take advantage

of the other search features, such as the ? wildcard. In

this example, ???? would filter the name down to

values with 4 characters.

Expression: =Sum({<name={“????”}>} exp)

You can think of Set Analysis as a where clause for an expression or a set of hard coded filters. There is a

series of documentation, cheat sheets, and blogs out there that go into more detail of all the potential

ways you leverage the search capability.

55

Lastly, there are some crazy things you

can do using Dollar-sign expansion as

well. Although I won’t go into it in this

section, it’s worth noting that Qlik Sense’s

feature, the Dollar-sign expansion

preview, has made it much much easier

to implement these types of expressions.

Changing Column Width

I’ve heard a few people mention that you can’t change the column width within a table. This is definitely

possible! If you haven’t stumbled on the solution yet, follow the steps below:

1. In read mode, use your mouse to change the column

to your desired width by dragging the vertical border

on the header.

2. Open Edit mode

3. Click on the table

4. You should see a prompt to “Apply Changes”, click

“Apply” to save your new layout.

I admit the UX is a bit wonky and unintuitive but once you

know it, you won’t forget it.

56

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Expressions/expression-editor.htm
https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Expressions/expression-editor.htm
https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Visualizations/Table/table.htm

Making Date Formats Functional

I’ve spent a lot of time over the years troubleshooting issues that resulted in it being because of the date

format. After a while I started to make a habit of always using dates in a numerical format when used for

conditions, whether it be in Set Analysis or a Where clause.

Here are a couple examples.

Load Script

Sales:

Load

RowNo() as Id,

Num(Date) as DateNum,

*

Inline [

Date, Amt

10/8/2019, 100

10/9/2019, 125

10/10/2019, 75

11/1/2019, 150

11/10/2019, 200

];

Left Join(Sales)

Load

DateNum,

1 as FutureFlag

Resident

Sales

Where

Num(DateNum) > Num(Today());

57

Set Analysis

With this, you don’t have to worry about setting the correct date format.

Create Your Own Concatenated Keys

What do you do when you need to associate multiple fields between two tables? The Qlik® Associative

Engine creates a synthetic key and everyone says that’s bad! First it’s good to understand what a

synthetic key is. In reality it is basically just a concatenated key generated by the Associative Engine. The

reason it’s taboo is because it’s automatic. You don’t in theory know how it was made or what the results

are going to be because it happened in a black box.

What you should do is create your own concatenated key. As always, it is best practice to be explicit. So

even if the output is the same, it’s better to program with thoughtfulness, rather than laziness.

58

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Scripting/synthetic-keys.htm

Synthetic Key

Concatenated Key

Data:
Load

Region & '|' & ProductId as %Region_Product,
Region,
Qty

Inline [
Region, ProductId, Qty
North, A, 12
East, B, 7
West, C, 19
North, B, 5
East, C, 8
West, D, 10
];

59

Product:
Load

Region & '|' & ProductId as %Region_Product,
ProductId,
Price

Inline [
Region, ProductId, Price
North, A, 5
East, A, 5
West, A, 6
North, B, 13
East, B, 8
West, B, 9
North, C, 1
East, C, 1
West, C, 1
North, D, 21
East, D, 12
West, D, 7
];

*I almost always use a pipe | as the separator.

By doing the above, it will remove the synthetic key.

In this case, the data results are the same. However, in complex data models synthetic keys can produce

unexpected results. Also, in some scenarios you may not even want the fields associating. So the answer

would not be a concatenated key at all. You would either want to remove the field or rename it, leaving the

one correct field to define the association.

60

Looping Over Records Using While
The While clause is an extremely powerful feature that you probably won’t use frequently, but when you

do it’s a god-send. Note that this is a part of the Do..Loop scripting convention. There is not a specific help

page on the keyword.

Using While allows you to loop on a record within a load statement. It will basically keep loading that

record until its condition is met. I like to think of them as mini-loops.

So take this super simple example. I have an array which is separated by pipes. I want to pull in the first

three values of the array, but not any past that.

Data:

Load * Inline [

Array

12|13|AAA|1

12|7|BBB|2

];

NewData:

Load

SubField(Array,'|', IterNo()) as ArrayValue,

IterNo() as ArrayIteration

Resident

Data

While

IterNo() <= 3;

Drop Table Data;

61

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptControlStatements/do.htm

IterNo is a function that keeps track of the iteration you are on. You can leverage in your While clause as

well as your field expressions.

This script example uses IterNo as the SubField parameter to pull out the first three values separated by

the delimiter, producing my desired results.

One place you may have seen this used is in Master Calendar scripts floating around on the Community.

I’ve seen it used to get a distinct list of dates quickly and/or to generate a new list of dates

62

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Scripting/CounterFunctions/IterNo.htm
https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/Scripting/StringFunctions/SubField.htm
https://community.qlik.com/t5/forums/searchpage/tab/message?advanced=false&allow_punctuation=false&filter=location&location=category:qlik-sense&q=master%20calendar

Example:

Let vDateField = 'Date';

AllDates:

Load

FieldValue('$(vDateFieldName)', IterNo()) AS EveryDate

AutoGenerate

(1)

While

Not IsNull(FieldValue('$(vDateField)', IterNo()));

Troubleshooting Associations: Subset Ratio
One quick tip about data modeling. If you find things in your model are not associating right, take a look at

your key fields. If you add up the subset ratio percentages of a key in each table that it is in and it equals

100%, this means there are no matching values. So even though the data model viewer shows them as

linked because the fields exist in each table, the values within them don’t. This could be due to formatting

or misunderstood key fields.

If you take a look at the example below. %Date in the Calendar table has 46.5%. While %Date in the Sales

table has 53.4%. This equates to ~100%. So each table has values for %Date, but none of them exist in

the other table.

If you take a closer look, you’ll notice that the date formats are different. This is a simple mistake that can

throw off your model entirely.

63

https://help.qlik.com/en-US/sense/September2019/Subsystems/Hub/Content/Sense_Hub/DataModeling/preview-tables-fields-data-model-viewer.htm

Calendar

64

Sales

Hidden Default Apps
Most of us are familiar with the License Monitor and Operations Monitor dashboards. These two logging

apps are automatically installed and placed in the ‘Monitoring apps’ stream.

65

Did you know that these are only a couple of dashboards that come with the Qlik Sense Enterprise

installation?

If you take a look at the following folder location, you will find that there are several additional applications

which can be imported through the QMC. These are especially useful when tuning applications and your

environment.

Folder: C:\ProgramData\Qlik\Sense\Repository\DefaultApps

66

I suggest taking some time to import these apps and reviewing their results. They are extremely handy.

Check the documentation for more info on how to configure and use them.

Using FieldValueList for Loops

This is a very neat option for loops. If you need to loop through a list of field values you can use the

FieldValueList mask. This could replace using the combination of NoOfRows and Peek. That is assuming

you only need to loop through the distinct list of values.

Numbers:
Load * Inline [
Num
Zero
One
Two
Two
Three
];

Trace --------------------- FieldValueList:;

67

https://help.qlik.com/en-US/sense-admin/September2019/Subsystems/DeployAdministerQSE/Content/Sense_DeployAdminister/QSEoW/Administer_QSEoW/Monitoring_QSEoW/Monitor-Qlik-Sense-site.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptControlStatements/For%20Each.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/TableFunctions/NoOfRows.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/InterRecordFunctions/Peek.htm

Let vIter = 0;

For each n in FieldValueList('Num')

Trace --------------------- Iteration: $(vIter) | Number: $(n);

Let vIter = $(vIter) + 1;

Next n;

vIter=;n=;

Trace --------------------- NoOfRows + Peek:;

For i = 0 to NoOfRows('Numbers')-1

Let vNum = Peek('Num',$(i),'Numbers');

Trace --------------------- Iteration: $(i) | Number: $(vNum);

Next i;

vNum=;i=;

68

Result

Notice the difference how the two options handle the value Two. FieldValueList (Blue) uses the symbol

table, so it loops over the unique values, whereas NoOfRows + Peek (Red) loops over the rows of the

internal table.

69

Did You Try Turning It Off and On Again?

After working with Qlik Sense® for a long time, you’ll soon find out that restarting the services can solve a

lot of unexpected behaviors and is a good starting point for environment bugs.

If you’re like me it can take a while to remember the order they should be done in. So here is the list of the

correct order.

Single Node Environment

1. Stop Qlik Sense Repository Service (Which will stop the following)
1. Qlik Sense Scheduler Service
2. Qlik Sense Proxy Service
3. Qlik Sense Printing Service
4. Qlik Sense Engine Service

2. Stop Qlik Sense Service Dispatcher Service
3. *Optional: Restart Qlik Logging Service
4. Restart Qlik Sense Repository Database
5. Start Qlik Sense Service Dispatcher
6. Start Qlik Sense Repository Service
7. Start remaining Qlik Sense services in any order

1. Qlik Sense Scheduler Service
2. Qlik Sense Proxy Service
3. Qlik Sense Printing Service
4. Qlik Sense Engine Service

Multi-Node Environment

If you have a multi-node environment, you should first stop the services on all RIM nodes. Perform the

above on the Central node. Once complete, start the services on each of the RIM nodes, starting at step 5

from above.

*If your system has crashed and the Engine Service does not want to stop, feel free to end the process

using the Task Manager.

70

FileList Mask Order Test

There is a feature available when doing a for each loop called FileList. It’s a way to get a list of files in a

directory that matches a wildcard path.

Since this is a parameter of the for each statement and not a function, there is not a lot of information on

it. You might have noticed that I like doing test cases. So I figured I would build a quick test to have as

reference for the future. One of the things I wanted to determine was what determines the returned list

order. So I ended up doing a quick test.

My guess was that there were three options:

1. File Name

2. File Time

3. File Size

Result: File Name ascending by alphabetical order.

Test 1

The test is pretty simple. We are going to create three files then read them back in using the FileList mask
and capture the order.

The first test is determined as such:

● File 1: z_Table
○ Highest Alpha
○ Lowest File Time
○ Middle Size

● File 2: m_Table
○ Middle Alpha
○ Middle File Time
○ Highest Size

● File 3: a_Table
○ Lowest Alpha
○ Highest File Time
○ Lowest Size

71

https://help.qlik.com/en-US/sense/February2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptControlStatements/For%20Each.htm

z_Table:
Load

1 as FieldA
AutoGenerate

(1000);

m_Table:
Load

1 as FieldB
AutoGenerate

(100000);

a_Table:
Load

1 as FieldC
AutoGenerate

(10);

result:
Load

Num(Null()) as Order,
Null() as File

AutoGenerate
(0);

For each t in 'z_Table', 'm_Table', 'a_Table'

Trace ---------------- $(t);
Store $(t) into [lib://QVD/test/for-each-order/$(t).qvd](qvd);

Next t;

For each file in FileList('lib://QVD/test/for-each-order/*.qvd')

Concatenate(result)
Load

RowNo() as Order,
'$(file)' as File

AutoGenerate
(1);

Next file;

72

Test 2

In this test I reversed the table store order, which reversed the File Time order.

● File 1: z_Table
○ Highest Alpha
○ Highest File Time
○ Middle Size

● File 2: m_Table
○ Middle Alpha
○ Middle File Time
○ Highest Size

● File 3: a_Table
○ Lowest Alpha
○ Lowest File Time
○ Lowest Size

z_Table:
Load

1 as FieldA
AutoGenerate

(1000);

m_Table:
Load

1 as FieldB
AutoGenerate

(100000);

a_Table:
Load

1 as FieldC
AutoGenerate

(10);

result:
Load

Num(Null()) as Order,
Null() as File

AutoGenerate
(0);

73

For each t in 'a_Table', 'm_Table', 'z_Table'

Trace ---------------- $(t);
Store $(t) into [lib://QVD/test/for-each-order/$(t).qvd](qvd);

Next t;

For each file in FileList('lib://QVD/test/for-each-order/*.qvd')

Concatenate(result)
Load

RowNo() as Order,
'$(file)' as File

AutoGenerate
(1);

Next file;

Test 3

In this test I reversed the File Size for z_Table and a_Table.

● File 1: z_Table
○ Highest Alpha
○ Highest File Time
○ Lowest Size

● File 2: m_Table
○ Middle Alpha
○ Middle File Time
○ Highest Size

● File 3: a_Table
○ Lowest Alpha
○ Lowest File Time
○ Middle Size

74

z_Table:
Load

1 as FieldA
AutoGenerate

(10);

m_Table:
Load

1 as FieldB
AutoGenerate

(100000);

a_Table:
Load

1 as FieldC
AutoGenerate

(1000);

result:
Load

Num(Null()) as Order,
Null() as File

AutoGenerate
(0);

For each t in 'a_Table', 'm_Table', 'z_Table'

Trace ---------------- $(t);
Store $(t) into [lib://QVD/test/for-each-order/$(t).qvd](qvd);

Next t;

For each file in FileList('lib://QVD/test/for-each-order/*.qvd')

Concatenate(result)
Load

RowNo() as Order,
'$(file)' as File

AutoGenerate
(1);

Next file;

75

Result

Every test returned the same thing: a_Table was the first within the list. This means that the FileList mask

returns an alphabetical file list.

How to Create a Quick Month Map

Here is a super quick tip. If you ever need to convert month names or prefixes to numbers or dates you

can leverage the default variables and Subfield to quickly create a mapping table to later use with an

ApplyMap.

SET ThousandSep=',';
SET DecimalSep='.';
SET MoneyThousandSep=',';
SET MoneyDecimalSep='.';
SET MoneyFormat='$#,##0.00;-$#,##0.00';
SET TimeFormat='h:mm:ss TT';
SET DateFormat='M/D/YYYY';
SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';
SET FirstWeekDay=6;
SET BrokenWeeks=1;
SET ReferenceDay=0;
SET FirstMonthOfYear=1;
SET CollationLocale='en-US';
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';
SET LongMonthNames='January;February;March;April;May;June;July;August;September;October;November;December';
SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';
SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';
SET NumericalAbbreviation='3:k;6:M;9:G;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:μ;-9:n;-12:p;-15:f;-18:a;-21:z;-24:y';

76

month_map:
Mapping Load

SubField('$(MonthNames)',';') as month,
RowNo() as month_num

AutoGenerate
(1);

example:
Load

MakeDate(year,ApplyMap('month_map',month,Null())) as date,
ApplyMap('month_map',month,Null()) as month_number,
*

Inline [
month, year, qty
Jan, 2020, 10
Feb, 2020, 15
Mar, 2020, 5
Apr, 2020, 20
];

and boom:

77

Get QVD Metadata from XML Headers

Each QVD contains an XML header which contains metadata about that QVD. It is very common to

leverage this to make a QVD Catalog dashboard to provide some overarching insight into all of the QVDs

in your environment.

To see, just select a QVD in a folder connection and change the File format from QVD to XML.

One thing to note is that XML is semi-structured. Fields will appear and disappear based on the data

available. For example, a QVD header will contain a Tag table if any of the fields are tagged. If none are

tagged, it won’t exist for that QVD. So make sure you handle these different edge cases in your load

script.

Where do Reload Logs Reside?

If you didn’t know, reload logs reside in the following folders:

● C:\ProgramData\Qlik\Sense\Log\Script

○ On the Qlik Engine that the application reloaded on.

● ~\QlikShare\ArchivedLogs\%Server_Name%\Script

78

Log files have the following naming convention:

%app_guid%.%reload_time%.%engine_session_id%

Example

75070c2c-375d-421a-a1db-accfe900b934.20200610T142244.030-0400.1B25998C34DCEB4ABD95.log

● app_guid: 75070c2c-375d-421a-a1db-accfe900b934

● reload_time (YYYY-MM-DDTHH.mm.ss-Z): 20200610T142244.030-0400

● engine_session_id: 1B25998C34DCEB4ABD95

You ever wonder why some reload logs stay in the first, while others get moved to the archive folder?

The answer is tasks. If an application gets reloaded by a task, that reload log will eventually get archived.

If you reload the application through the data load editor it never gets archived.

79

Natively Loading JSON
I want to start this section off by mentioning that this only works for flat json, meaning non-nested json

hierarchies. It is possible to leverage this for nested json but takes a bit more elbow grease and

knowledge of the schema. Since my intention is to keep these things brief, I’ll save that for another time.

So getting into it, imagine you have a field with json values and we want to convert the json to a table.

What we can do is leverage From_Field and put json for our table format.

Script

raw:
LOAD

"@1:n" as session_logs
FROM

[lib://QlikShare/Dev/json/session-reload.log](fix, codepage is 28591, embedded labels);

json:
Load

*
From_Field

(raw, session_logs)(json,utf8, no labels);

80

https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/Load.htm

Result

We can also directly load a .json file as well. Although, for it to to work it can only be a single flat json

structure with no labels or headers.

Example

81

Script

single:
Load

*
FROM

[lib://QlikShare/Dev/json/session-single.json](json, utf8, no labels);

Result

I find this tip particularly interesting because it isn’t mentioned in the Qlik Sense®’ documentation. You

would expect json to be one of the options here, but it’s not. Gotta love Easter eggs.

82

https://help.qlik.com/en-US/sense/June2020/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptSpecifiers/table-format.htm

Section Access Tips and Tricks

This post isn’t necessarily made to teach you what Section Access is, but rather to help you better

understand it and provide you some tools to help troubleshoot it.

Keywords

Admittedly this took me 6-7 years of using Section Access to fully understand what the keywords Section

Access and Section Application did. Essentially, you can think of a Qlik Sense® (or QlikView®) load

script to be defined in two parts. First your application part, which defines everything on your Qlik Sense®

application. Second is your security part, which defines the security portion, meaning it isn’t defining your

application but the security on it.

Section Access basically signifies to the interpreter that we are now defining our access portion. Who

can access What? Section Application then tells us that we are resuming defining our application.

This helped me better understand what each of the keywords did and when to use them.

83

https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/Scripting/Security/manage-security-with-section-access.htm

Security Table

The security table is there to define the… well security. The easiest way to think about it is that the table

defines a pre-selection for the user. The data associated with that selection is what they have access to.

Fields

● ACCESS
○ ADMIN – Does not apply Section Access to user
○ USER – Applies Section Access to user

● USERID
○ DOMAIN\USER of user access Qlik dashboard

Tip: Use “=OSUser()” in a KPI chart or the Users page in QMC to see

● GROUP
○ User directory Group attribute to use to define rule.

● OMIT
○ Field to omit from user’s model.

● %FIELD%
○ Name of field to link to a data table to apply row level security, or key to omit table,

which contains OMIT field.

84

Testing

There’s nothing worse than releasing an application into the wild and receiving a bunch of emails saying

that they can’t access the dashboard, or worse that their colleagues are seeing data they aren’t allowed to

see.

Since Section Access acts as a selection it is very simple to test. What I suggest you do is comment out

the keywords and create a simple sheet and test the user’s access. You can filter on USERID to limit the

data to what they will see when Section Access is applied.

Example

User – Test

User – BardessGroup

85

Limit Table

I have over the years grown to always create a bridge table between my security table and my data table.

This is because I want my security table to be one row per user. The limit table will then define the

association and therefore security. Similarly, if you are using OMIT, I will create an omit table which

contains the fields to omit and the group which is tied to those. This is to keep the relationship 1 to many

and my security table one row per user.

Script

Section Access;

security:
Load * inline [
ACCESS, USERID, DEPT, OMITGROUP
ADMIN, INTERNAL\sa_scheduler
USER, QSDEV\BARDESSGROUP, ADMIN
USER, QSDEV\TEST, HIP HOP, A
];

column_omit:
Load * Inline [
OMITGROUP, OMIT
A, target
A, pii
];

Section Application;

limit:
Load distinct

'ADMIN' as DEPT,
department

Resident
data

Where
department <> 'Army';

86

Concatenate(limit)
Load distinct

Upper(department) as DEPT,
department

Resident
data;

Model

Troubleshooting

UPPER CASE!

I truly wonder how much time collectively the Qlik Community has spent troubleshooting Section Access

and the culprit was that the data wasn’t upper case. Make your field names and value UPPER CASE. It

will solve so much headache in your future to remember this.

87

Tasks Fail

If your reload succeeds when run by you in the hub but fails as a task, this is because the internal service

account doesn’t have access. In Qlik Sense this is INTERNAL\SA_SCHEDULER. Make sure to add it to your

Section Access security table as an admin.

Access Denied

If a user cannot open the application from the hub, then they are not in the Section Access security table.

OMIT Experience

If you omit a field for a user and a chart uses that field as a dimension, it will cause an error. To account

for this you will need to make sure there is a calculation condition on the dimension/measure so that it is

hidden for the users that do not have access to it. That or leverage a Hide/Show mechanic in a container

to replace the chart with something else that would be useful.

88

What I typically do is add an expression in the calculation condition:

Example – Omit field pii

=If(Len('$(=MaxString({1}[pii]))')>1,1,0)

I make sure I am using the set of 1 {1} so the user’s that do have access to the field aren’t affected by the

condition because of their filters. Additionally, I am checking the MaxString value so it works for both text

and numeric fields. If the field doesn’t exist, it will return NULL which will return -, hence the condition of

Len() > 1.

89

User With Access

User Without Access

Hopefully this helps. I know I could use back the day or three I’ve spent banging my head against the wall

working with Section Access.

90

Understanding QVDs and Optimized Loads

If you have been working with Qlik Sense® or QlikView® for a bit I am sure you have heard of QVDs. If you

have been working with Qlik a while hopefully you have heard of optimized QVD loads and

non-optimized QVD loads. Either way, hopefully I can shed some of the mystery around QVDs and these

two loads in our final section.

What is a QVD?

A QVD is a proprietary data file format made by Qlik® which is made up of two parts:

1. XML metadata header
1. This contains the data around the data…. Number of records, fields, tags, etc..

2. Binary data
1. This is the actual data which has been compressed in a way unique to Qlik. One of

Qlik’s key differentiators.

How is data stored in a Qlik application?

This is a crucial point for so many things in the Qlik world. There is a wonderful blog post by Henric

Cronström who explains how the Qlik® Associative Engine stores data internally which you can read

here. I advise any Qlik developer to read this, and read it again. This will drive so many decisions for

optimization.

To summarize, data is stored in a columnar format in the sense that each field has its own structure. There

is a distinct list of values for a field which contain a mapping of the value and a reference point. This

reference point (bit-stuffed pointer) is what is populating the data tables. So ultimately there is only one

single value stored for each field value. All duplicate values for the rows in the table are references. This

allows the data to be compressed immensely. This is also why field cardinality is such a large driver to the

Qlik Sense® application size.

91

https://community.qlik.com/t5/Qlik-Design-Blog/Symbol-Tables-and-Bit-Stuffed-Pointers/ba-p/1475369

QVD Data Storage

So if Qlik® has this special data structure / storage mechanism, how does this affect QVDs? Well QVDs

binary data is stored in a very similar format as it exists in memory.

Optimized QVD Loads

Optimized QVD Loads, in a simple explanation, takes the data from the QVD and pushes it directly into

memory. There is no processing or time necessary to read or interpret the data, it is already in the form it

needs to be in. The time it takes is mainly moving the file from disk to memory. It really is a feat that Qlik

can load hundreds of millions of rows in seconds.

Unoptimized QVD Loads

Now knowing what an optimized QVD load does, it makes more sense of what causes an unoptimized

QVD load. Once you perform a field transformation or where condition, it becomes unoptimized; with a

few exceptions. This is because Qlik Sense® can’t just directly push the data into memory anymore. Now

the data has to be unwrapped and modified before it is stored in memory. This is still typically faster than

other data formats such as flat files, databases, APIs, etc… but it is nowhere near as fast as an optimized

load. This is why the Qlik community holds it in such a high regard.

What breaks a QVD Load?

Honestly, it makes more sense to describe what you can do and still keep a QVD load optimized.

● Renaming fields.
● You can load a field twice, with a different name of course.
● Simple Where Exists.

○ Simple: Where Exists([Field])
○ Not Simple: Where Exists([Field],[FieldA]&[FieldB])
○ The field used in the Exists clause must be in the load script.

○ Ex: Tbl: Load Period, Dim, Amt From [Sales.qvd] (qvd)
Where Exists(Period);

● Concatenate to a table, only if it contains all of the fields of the table it is concatenating to.
○ QVD can contain additional fields.

92

So to summarize what would break an optimization:

● Field transformation
● New field: expression, number, string, etc…
● Where & While conditions
● Joins
● Concatenating a QVD to a table which has fields not in the QVD

Strategy

I will admit this is a bit limiting. There are going to be use cases there the data needs to be modified in

some way. My suggestion is frame out your load so as to best leverage QVD loads to optimize getting

data into your application. Sometimes this will be more round about, but will likely be faster.

Example

Sales QVD:

● 400 Million Rows
● 15 Years of Data
● 3 Company Ledgers

Requirement:

● Rolling Three Years
● 0L Ledger Only

93

Traditional Load Script (Unoptimized)

sales:
Load

Id,
Year,
Period,
CostCenter,
Account,
Region,
Company,
Ledger,
Qty,
Amount

From
[lib://QVD/Sales.qvd](qvd)

Where
Year >= Year(Today())-2
AND Ledger = '0L';

Logic

How can I leverage a QVD optimized load to get the smallest data set I need in the quickest way?

Assuming all things are quite equal:

● 400M rows / 15 years = ~27M per year

○ 3 years = ~100M rows

● 400M rows / 3 ledgers = ~133M rows per ledger

○ 1 ledger = 133M rows.

3 years of data seems to be the smaller cut of data.

I would want to leverage the simple where exists condition to filter down to the three years of data and

then further filter down to a single ledger.

94

Optimized Load Script

// Get rolling Three Years
year_exists:
Load

Year(Today())-(IterNo()-1) as Year
AutoGenerate

(1)
While

IterNo() <= 3;

sales:
Load

Id,
Year,
Period,
CostCenter,
Account,
Region,
Company,
Ledger,
Qty,
Amount

From
[lib://QVD/Sales.qvd](qvd)

Where
Exists(Year); // Keeping QVD Load optimized

// Remaining Logic
Inner Join(sales)
Load * Inline [
Ledger
0L
];

Drop Table year_exists;

Even though there are more steps, it will cut down the reload time greatly. This is another example of how

you should test different scenarios and strategies to determine which is faster. In our example, it could be

that the 0L ledger only accounts for 10% of the data and is much smaller than three years of the total

dataset.

95

Conclusion

With this, we will come to a close. We hope this information has helped you as much as it has helped us.

Our goal is to innovate and create cool and interesting solutions for complex problems. This has led us to

realize more and more that understanding the fundamentals is crucial to accelerate our journey. We have

found it very rewarding taking these ideas and topics and boiling them down into a simple form to help

teach others, while better understanding them ourselves.

Thank you for reading!

96

https://bardess.com
https://whereclause.com

	50 Bytes eBook Cover 2 7-6-21.pdf
	Bardess �Bytes of Wisdom: �50 Qlik Tips to Accelerate �Your Development

	Bardess Bytes - 50 Qlik Tips to Accelerate Your Development (7-6-21).pdf
	Bardess Bytes - 50 Qlik Tips to Accelerate Your Development 7-6-21.pdf

